1. Linear Model
from sklearn.linear_model import *
< Classifier >
LogisticRegression
RidgeClassifier
< Regression >
LinearRegression
Ridge
Lasso
ElasticNet
2. Decomposition
from sklearn.decomposition
PCA
3. Ensemble
from sklearn.ensemble import *
BaggingClassifier
BaggingRegressor
GradientBoostingClassifier
GradientBoostingRegressor
RandomForestClassifier
RandomForestRegressor
VotingClassifier
VotingRegressor
4. Preprocessing and Normalization
from sklearn.preprocessing import *
LabelEncoder
MinMaxScaler
Normalizer
StandardScaler
RobustScaler
5. Model selection
from sklearn.model_selection import *
KFold
cross_val_score
6. tree
from sklearn.tree import *
DecisionTreeClassifier
DecisionTreeRegressor
7. cluster
from sklearn.cluster import *
DBSCAN
KMeans
8. Scoring
from sklearn.metrics import *
< classification >
accuracy_score
f1_score
log_loss
precision_score
recall_score
roc_auc_score
< Regression >
mean_absolute_error
mean_squared_error
mean_squared_log_error
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing
'Career > Certificate' 카테고리의 다른 글
제 2회 빅데이터분석기사 후기 (0) | 2021.07.16 |
---|---|
[빅데이터분석기사] 실기 - 단답형 준비 (5) | 2021.06.18 |
[빅데이터분석기사] 실기 - 작업형 제 1유형 (2) | 2021.06.09 |
[빅데이터분석기사] 실기 예시 풀이 (2) | 2021.05.31 |
[빅데이터분석기사] 필기 - 4. 빅데이터 결과 해석 (0) | 2021.05.30 |
댓글